《水动力学研究与进展》
目的线状目标的检测具有非常广泛的应用领域,如车道线、道路及裂缝的检测等,而裂缝是其中最难检测的线状目标。为避免直接提取线状目标时图像分割难的问题,以裂缝和车道线为例,提出了一种新的跟踪线状目标中线的算法。方法对图像进行高斯平滑,用一种新的分数阶微分模板增强图像中的模糊及微细线状目标;基于Steger算法提出一种提取线状目标中心线特征点的算法,避免了提取整体目标的困难;根据水动力学思想将裂隙看成溪流,通过最大熵阈值处理后,先进行特征点的连接,再基于线段之间的距离及夹角进行线段之间的连接(溪流之间的融合)。结果对300幅裂缝图像及4种类别的其他线状目标图像进行试验,并与距离变换、最大熵阈值法+细线化Otsu阈值分割+细线化、谷底边界检测等类似算法进行比较分析,本文算法检测出的线状目标的连续性好、漏检(大间隙少)和误检(毛刺及多余线段少)率均较低。结论本文算法能够在复杂的线状目标图像中准确快速地提取目标的中心线,一定程度上改善了复杂线状目标图像分割难的问题。